An Introduction to the Mechanics of Soils and Foundations

An Introduction to the Mechanics of Soils and Foundations is a new title in the
McGraw-Hill International Series in Civil Engineering

International Editorial Board

Editors in Chief
Professor F. K. Kong
Nanyang Technological University, Singapore
Emeritus Professor R. H. Evans, CBE
University of Leeds

Editorial Board
Emeritus Professor D. Campbell-Allen AO
University of Sydney
Professor C. N. Chen
Nanyang Technological University, Singapore
Professor Y. K. Cheung
University of Hong Kong
Professor K. Kosso Thomas
University of Sierra Leone
Professor M. P. Nielsen
Technical University of Denmark

An Introduction to
THE MECHANICS OF SOILS AND FOUNDATIONS
Through Critical State Soil Mechanics

John Atkinson
Professor of Soil Mechanics
City University, London

McGRAW-HILL BOOK COMPANY
London • New York • St Louis • San Francisco • Auckland
Bogotá • Caracas • Lisbon • Madrid • Mexico • Milan
Montreal • New Delhi • Panama • Paris • San Juan
São Paulo • Singapore • Sydney • Tokyo • Toronto
This book is about the behaviour of engineering soils and simple geotechnical structures such as foundations and slopes and it covers most of the theoretical geotechnical engineering content of a degree course in civil engineering. The book is aimed primarily at students taking first degree courses in civil engineering but it should also appeal to engineers, engineering geologists and postgraduate students wishing for a simple and straightforward introduction to the current theories of soil mechanics and geotechnical engineering. Although it deals specifically with soils and soil mechanics many of the theories and methods described apply also to rocks and rock mechanics.

The teaching and practice of geotechnical engineering has undergone significant changes in the past 25 years or so, both in the development of new theories and practices and in the standing of the subject within the civil engineering curriculum. Geotechnical engineering is now regarded as one of the major disciplines in civil engineering analysis (the others being hydraulics and structures). The most important development, however, has been the unification of shearing and volumetric effects in soil mechanics in the theories known generally as critical state soil mechanics and application of these theories in geotechnical analysis. In this book, unlike most of the other contemporary books on soil mechanics, the subject is developed using the unified theories right from the start, and theories for stability of foundations and slopes are developed through the upper and lower bound plasticity methods as well as the more commonly used limit equilibrium method. This is an up-to-date approach to soil mechanics and geotechnical engineering and it provides a simple and logical framework for teaching the basic principles of the subject.

The term ‘critical state soil mechanics’ means different things to different people. Some take critical state soil mechanics to include the complete mathematical model known as Cam Clay and they would say that this is too advanced for an undergraduate course. My view is much simpler, and by critical state soil mechanics I mean the combination of shear stress, normal stress and volume into a single unifying framework. In this way a much clearer idea emerges of the behaviour of normally consolidated and overconsolidated soils during drained and undrained loading up to, and including, the ultimate or critical states. It is the relationship between the initial states and the critical states that largely determines soil behaviour. This simple framework is extremely useful for teaching and learning about soil mechanics and it leads to a number of simple analyses for stability of slopes, walls and foundations.

This book is based on courses of lectures given to undergraduate students in civil engineering at City University. In the first year students take a course in geology and they also take a course in mechanics of materials within which there are six to eight lectures on soil mechanics and geotechnical engineering. These lectures cover the whole of the conventional syllabus (classification, seepage, strength, consolidation, bearing capacity and settlement, slope stability and earth pressure) but at lightning speed. The object is to introduce the students to the concepts and vocabulary of geotechnical engineering within the context of conventional mechanics of materials and structures and with reference to their everyday, childhood experiences of playing with
sand, flour, plasticine and other soil-like materials so that, as the course develops in later years, they can relate particular topics into the whole scheme of civil engineering.

In the second year the students take a major course of lectures (with several laboratory sessions) in theoretical soil mechanics and geotechnical engineering. This is based on my earlier books—The Mechanics of Soils (with Peter Bransby) and Foundations and Slopes. This course depends entirely on the unification of shearing and volumetric effects which is introduced right from the start (and had been in the first year), although the phrase ‘critical state soil mechanics’ is rarely used. Theoretical soil mechanics is taken up to the development of a complete state boundary surface but stops short of the mathematical treatment ofCam clay. Stability problems are solved using upper and lower bound methods and these are then used to introduce limit equilibrium methods and standard tables and charts for bearing capacity, slope stability and earth pressure. In the third year the course covers practical aspects of geotechnical engineering through a series of lectures and projects on topics such as ground investigation, foundations, slopes, retaining walls and embankment designs.

This book covers the material in the second-year course (and also that summarized in the first year). It does not deal specifically with the practical aspects of geotechnical engineering which are introduced in the third year and are, in any case, generally better learned through working in practice with experienced engineers. This book should provide the basic text for an undergraduate course, but students will have to consult other books and publications to find more detailed coverage of particular topics such as laboratory testing, seepage, slope stability and foundation design.

The treatment of soil mechanics and geotechnical engineering in this book is simple, straightforward and largely idealized. I have tried to relate the behaviour of soils and geotechnical structures to everyday experiences, encouraging students to perform simple experiments themselves at home, on holiday and in a basic soil mechanics laboratory. I have described some simple tests which are designed to demonstrate the basic principles rather than generate highly accurate results. Only a few details are given of the apparatus and procedures since engineers should be trained to design and build simple equipment and work out how to make observations and analyse results themselves.

To illustrate the basic nature of soil strength and stiffness I have described the behaviour of soils in oedometer tests and in ideal shear tests in order to separate the effects of normal stress and compression from the effects of shearing and distortion. I have also described the behaviour of soils in triaxial tests, as these are the best tests to evaluate soil parameters. Readers will notice that I have not included data from tests on real soils or case histories of construction performance. This is quite deliberate and is common practice in undergraduate texts on structures, hydraulics, concrete and so on. As the book is intended primarily as an undergraduate teaching text it is kept simple and straightforward. The basic soil mechanics theories have been clearly demonstrated in earlier books from Critical State Soil Mechanics by Schofield and Wroth in 1968 to Soil Behaviour and Critical State Soil Mechanics by Muir Wood in 1991, and almost everything in this book follows from these well-established theories.

Throughout I have dealt with simple theories and idealizations for soil behaviour. I am very well aware that many natural soils behave in ways that differ from these idealizations and that there are a number of additional factors that may influence the design and analysis of geotechnical structures. Nevertheless, I am convinced that for the purposes of teaching the fundamental principles to students it is better to maintain the simplicity of the idealized treatment, provided always that they appreciate that it is idealized. At many points in the text I have indicated where the behaviour of various natural soils may depart significantly from the idealized behaviour. I expect that individual lecturers will bring in other examples of the behaviour of natural soils drawn from their own experiences, but I hope that they would discuss these within the simple framework described in this book.
At the end of most chapters there is a short summary of the main points covered in the chapter and, in most cases, simple worked examples and exercises that illustrate the theories developed in the text. There is also a short selection of books and articles for further reading and a list of specific references quoted in the text.

The courses at City University which form the basis of this book were developed jointly with my colleagues Neil Taylor, Matthew Coop and John Evans and I am grateful to them for their contributions and for their comments and criticisms. I am grateful also for the very detailed comments that I received from many friends and colleagues, including Mark Allman, Eddie Bromhead, Peter Fookes, Charles Hird, Marcus Matthews, Sarah Stallebrass and Giulia Viggiani. The typing was shared between Anne-Christine Delalande and Robert Atkinson.

John Atkinson
City University
London
The SI system of units has been used: the basic units of measurement are:

<table>
<thead>
<tr>
<th>Length</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>s</td>
</tr>
<tr>
<td>Force</td>
<td>N</td>
</tr>
</tbody>
</table>

Some useful derived units are:

<table>
<thead>
<tr>
<th>Velocity</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>m/s²</td>
</tr>
<tr>
<td>Stress (pressure)</td>
<td>kN/m² = kiloPascal = kPa</td>
</tr>
<tr>
<td>Unit weight</td>
<td>kN/m³</td>
</tr>
</tbody>
</table>

Unit force (1 N) gives unit mass (1 kg) unit acceleration (1 m/s²). The acceleration due to the Earth’s gravity is \(g = 9.81 \text{ m/s}² \); hence the force due to a mass of 1 kg at rest on Earth is 9.81 N. (Note: there are about 10 apples in 1 kg: hence a stationary apple gives rise to a force of about 1 N acting vertically downwards.)
As in most branches of science and engineering, geotechnical engineering uses mathematics and symbols to develop general theories. Because the English alphabet has a limited number of characters, much of the Greek alphabet is used.
GLOSSARY OF SYMBOLS

Stress and strain parameters

One-dimensional compression and shear tests:

\(\tau' \) shear stress
\(\sigma' \) normal stress
\(\gamma \) shear strain
\(\varepsilon_v \) volumetric strain = normal strain

Triaxial tests:

\(q' = (\sigma'_a - \sigma'_i) \) deviatoric stress
\(p' = \frac{1}{3}(\sigma'_a + 2\sigma'_i) \) mean normal stress
\(\varepsilon_s = \frac{2}{3}(\varepsilon_a - \varepsilon_r) \) shear strain
\(\varepsilon_v = \varepsilon_a + 2\varepsilon_r \) volumetric strain

Superscripts for strains

\(e \) elastic
\(p \) plastic

Subscripts for states

0 initial state (i.e. \(q_{0}, p_{0}, v_{0} \))
f critical state (i.e. \(q_{f}, p_{f}, v_{f} \))
p peak state (i.e. \(q_{p}, p_{p}, v_{p} \))

Subscripts for axes

\(z, h \) vertical and horizontal
\(a, r \) axial and radial

Normalizing parameters

\(\ln p'_{c} = (\Gamma - v)/\lambda \)
\(v_{\lambda} = v + \lambda \ln p' \)
\(\log \sigma'_{c} = (e_{\Gamma} - e)/C_{c} \)
\(e_{\lambda} = e + C_{e} \log \sigma' \)

A area
A activity
B breadth or width
\(C_{c} \) slope of the normal compression line
\(C_{s} \) slope of a swelling and recompression line
D depth
\(D_{r} \) relative density
E Young's modulus (\(E' \) for effective stress; \(E_{u} \) for undrained loading)
\(F_{s} \) factor of safety
\(G_{s} \) specific gravity of soil grains
G shear modulus (G' for effective stress; G_u for undrained loading)

H height or thickness

H maximum drainage path

I_{p} influence coefficient for stress

$I_{p'}$ influence coefficient for settlement

K bulk modulus

K_o coefficient of earth pressure at rest

K_a coefficient of active earth pressure

K_p coefficient of passive earth pressure

L length

LL liquid limit

LI liquidity index

N normal force

N_s, N_r, N_q bearing capacity factors

P potential

P force on retaining wall

P_a force due to active pressure

P_p force due to passive pressure

P_n force due to free water

Q flow (volume)

Q_p pile load

Q_b pile base resistance

Q_s pile shaft resistance

R radius

S_c stress state parameter $= p'_{c}/p'$

S_v volume state parameter $= v_c - v$

T shear force

T_c time factor for one-dimensional consolidation

T_r time factor for radial consolidation

U force due to pore pressures

U_c average degree of consolidation

V volume

V_s volume of water

V_s' volume of soil grains

V velocity (of seepage)

W work

W weight

W_w weight of water

W_s weight of soil grains

b thickness or width

c' cohesion intercept in Mohr–Coulomb failure criterion

c_r coefficient of consolidation

e voids ratio

e_0 voids ratio of normally consolidated soil at $p' = 1.0$ kPa

e_x voids ratio of overconsolidated soil at $p' = 1.0$ kPa

e_r voids ratio of soil on the critical state line at $p' = 1.0$ kPa

g shear modulus for states inside the state boundary surface

h_w height of water in standpipe

i slope angle
critical slope angle
hydraulic gradient
critical hydraulic gradient
coefficient of permeability
coefficient of compressibility for one-dimensional compression
rate of seepage
bearing pressure
bearing capacity
net bearing pressure
allowable bearing pressure
radius
pore pressure coefficient
length along a flowline
undrained strength
time
pore pressure
steady state pressure
excess pore pressure
specific volume
specific volume of overconsolidated soil at \(p' = 1.0 \text{ kPa} \)
water content
specific volume of soil on the critical state line at \(p' = 1.0 \text{ kPa} \)
large increment of
slope of CSL projected to \(q':p' \) plane
specific volume of normally consolidated soil at \(p' = 1.0 \text{ kPa} \)
sum of
adhesion factor for pile friction
unit weight
dry unit weight
unit weight of water (\(= 9.81 \text{ kN/m}^3 \))
small increment of
angle of friction between structure and soil
slope of swelling and recompression line
slope of normal consolidation line and CSL
Poisson's ratio (\(v \) for drained loading, \(v_u = \frac{1}{2} \) for undrained loading)
settlement
consolidation settlement
initial settlement
settlement at time \(t \)
final consolidation settlement
angle of friction
allowable friction angle
critical state friction angle
peak friction angle
angle of dilation
3.4 Strength
3.5 Elasticity
3.6 Perfect plasticity
3.7 Combined elasto–plastic behaviour
3.8 Time and rate effects
3.9 Summary

CHAPTER 4 THE STRUCTURE OF THE EARTH
4.1 Introduction
4.2 The Earth’s crust
4.3 Geological processes
4.4 Stratigraphy and the age of soils and rocks
4.5 Depositional environments
4.6 Recent geological events
4.7 Importance of geology in geotechnical engineering

CHAPTER 5 CLASSIFICATION OF SOILS
5.1 Description and classification
5.2 Description of soils
5.3 Soil particle sizes, shapes and gradings
5.4 Properties of fine-grained soils
5.5 Specific volume, water content and unit weight
5.6 Limits of consistency
5.7 Current state
5.8 Origins of soils
5.9 Simple practical exercises
5.10 Summary

CHAPTER 6 PORE PRESSURE, EFFECTIVE STRESS AND DRAINAGE
6.1 Introduction
6.2 Stress in the ground
6.3 Groundwater and pore pressure
6.4 Effective stress
6.5 Importance of effective stress
6.6 Demonstrations of effective stress
6.7 Volume change and drainage
6.8 Drained loading, undrained loading and consolidation
6.9 Rates of loading and drainage
6.10 Summary

CHAPTER 7 LABORATORY TESTING OF SOILS
7.1 Purposes of laboratory tests
7.2 Standard tests and specifications
7.3 Basic classification tests
7.4 Measurement of coefficient of permeability
7.5 Principal features of soil loading tests
7.6 One-dimensional compression and consolidation (oedometer) tests
7.7 Shear tests
7.8 Conventional triaxial compression tests
7.9 Hydraulic triaxial cells—stress path tests
CHAPTER 8 COMPRESSION AND SWELLING
8.1 Introduction
8.2 Isotropic compression and swelling
8.3 Overconsolidation
8.4 States of soils on the wet side and on the dry side of critical
8.5 One-dimensional compression and swelling
8.6 Laboratory demonstrations of compression and swelling of soils
8.7 Summary

CHAPTER 9 CRITICAL STATE STRENGTH OF SOIL
9.1 Behaviour of soil in shear tests
9.2 Peak, ultimate and residual states
9.3 Critical states
9.4 Undrained strength
9.5 Normalizing
9.6 Critical state strength of soils measured in triaxial tests
9.7 Relationships between strength measured in shear and triaxial tests
9.8 Simple experimental investigations of critical states
9.9 True cohesion in soils
9.10 Estimation of the critical state strength parameters from classification tests
9.11 Summary

CHAPTER 10 PEAK STATES
10.1 Introduction
10.2 Mohr-Coulomb line in shear tests
10.3 Mohr-Coulomb line in triaxial tests
10.4 Curved peak state lines
10.5 Peak states and dilation
10.6 Variation of peak state with initial state
10.7 Summary

CHAPTER 11 BEHAVIOUR OF SOIL BEFORE FAILURE
11.1 Introduction
11.2 Wet side and dry side of critical
11.3 State boundary surface for soil
11.4 Elastic behaviour at states inside the state boundary surface
11.5 Undrained loading on the state boundary surface
11.6 Stress ratio and dilation
11.7 Softening of soil beyond the peak state and development of slip surfaces
11.8 Summary

CHAPTER 12 CAM CLAY
12.1 Introduction
12.2 Basic features of the Cam clay models
12.3 State boundary surface for ordinary Cam clay
12.4 Calculation of plastic strains
12.5 Yielding and hardening
12.6 Complete constitutive equations for ordinary Cam clay
12.7 Applications of Cam clay in design
12.8 Summary

CHAPTER 13 STIFFNESS OF SOIL
13.1 Introduction
13.2 Cam clay and soil stiffness
13.3 Stiffness–strain relationships for soil
13.4 Strains in the ground
13.5 Measurement of soil stiffness in laboratory tests
13.6 Stiffness of soil at small and very small strains
13.7 Numerical modelling of soil stiffness
13.8 Summary

CHAPTER 14 CONSOLIDATION
14.1 Basic mechanism of consolidation
14.2 Theory for one-dimensional consolidation
14.3 Isochrones
14.4 Properties of isochrones
14.5 Solution for one-dimensional consolidation by parabolic isochrones
14.6 Other consolidation solutions
14.7 Determination of c_v from oedometer tests
14.8 Continuous loading and consolidation
14.9 Summary

CHAPTER 15 AGEING AND STRUCTURE IN NATURAL SOILS
15.1 Characteristics of natural soils
15.2 Formation of natural soils: one-dimensional compression and swelling
15.3 Ageing
15.4 Vibration and compaction
15.5 Creep
15.6 Cementing
15.7 Weathering
15.8 Changes in pore water salinity
15.9 Summary

CHAPTER 16 GROUND INVESTIGATIONS
16.1 Introduction
16.2 Objectives of ground investigations
16.3 Planning and doing investigations
16.4 Test pitting, drilling and sampling
16.5 In situ testing
16.6 States of soils in the ground
16.7 Investigating groundwater and permeability
CHAPTER 17 STEADY STATE SEEPAGE
17.1 Groundwater conditions 203
17.2 Practical problems of groundwater flow 204
17.3 Essentials of steady state seepage 205
17.4 Flow through a simple flownet 207
17.5 Flownet for two-dimensional seepage 209
17.6 Piping and erosion 210
17.7 Seepage through anisotropic soils 212
17.8 Summary 212

CHAPTER 18 STABILITY OF SOIL STRUCTURES USING BOUND METHODS 215
18.1 Introduction 215
18.2 Theorems of plastic collapse 216
18.3 Compatible mechanisms of slip surfaces 217
18.4 Work done by internal stresses and external loads 218
18.5 Simple upper bounds for a foundation 220
18.6 Discontinuous equilibrium stress states 222
18.7 Simple lower bounds for a foundation 226
18.8 Upper and lower bound solutions using fans 227
18.9 Bound solutions for the bearing capacity of a foundation using fans 231
18.10 Summary 233

CHAPTER 19 LIMIT EQUILIBRIUM METHOD 240
19.1 Theory of the limit equilibrium method 240
19.2 Simple limit equilibrium solutions 241
19.3 Coulomb wedge analyses 242
19.4 Simple slip circle analysis for undrained loading 245
19.5 Slip circle method for drained loading—the method of slices 246
19.6 Other limit equilibrium methods 249
19.7 Limit equilibrium solutions 251
19.8 Summary 251

CHAPTER 20 STABILITY OF SLOPES 256
20.1 Introduction 256
20.2 Types of instability 257
20.3 Stress changes in slopes 258
20.4 Influence of water on stability of slopes 260
20.5 Choice of strength parameters and factor of safety 261
20.6 Stability of infinite slopes 263
20.7 Stability of vertical cuts 268
20.8 Routine slope stability analyses 270
20.9 Behaviour of simple excavations 271
20.10 Summary 272

CHAPTER 21 EARTH PRESSURES AND STABILITY OF RETAINING WALLS 275
21.1 Introduction 275
21.2 Types of retaining structure
21.3 Failure of retaining walls
21.4 Stress changes in soil near retaining walls
21.5 Influence of water on retaining walls
21.6 Calculation of earth pressures—drained loading
21.7 Calculation of earth pressures—undrained loading
21.8 Overall stability
21.9 Choices of soil strength and factor of safety
21.10 Summary

CHAPTER 22 BEARING CAPACITY AND SETTLEMENT OF SHALLOW FOUNDATIONS
22.1 Types of foundations
22.2 Foundation behaviour
22.3 Stress changes in foundations
22.4 Bearing capacity of shallow foundations
22.5 Choice of soil strength and load factor for foundations
22.6 Foundations on sand
22.7 Foundations on elastic soil
22.8 Settlements for one-dimensional loading
22.9 Summary

CHAPTER 23 PILED FOUNDATIONS
23.1 Types of piled foundations
23.2 Base resistance of single piles
23.3 Shaft friction on piles
23.4 Pile testing and driving formulae
23.5 Capacity of pile groups
23.6 Summary

CHAPTER 24 GEOTECHNICAL CENTRIFUGE MODELLING
24.1 Modelling in engineering
24.2 Scaling laws and dimensional analysis
24.3 Scaling geotechnical models
24.4 Purposes of modelling
24.5 Geotechnical centrifuges
24.6 Control and instrumentation in centrifuge models
24.7 Summary

CHAPTER 25 CONCLUDING REMARKS

AUTHOR INDEX

SUBJECT INDEX
An Introduction to the Mechanics of Soils and Foundations covers the full undergraduate course in geotechnical engineering. It also provides a concise introduction to modern soil mechanics for advanced-course students and for practising engineers. The book sets out the basic theories of soil mechanics in a clear and simple way, combining both classical and critical state theories. Through up-to-date critical state soil mechanics, the reader is provided with a clear and concise theory for understanding the fundamental features of soil behaviour relating strength, stiffness, dilation and cohesion in a single framework. Theories for stability of slopes, foundations and retaining walls are developed through the simple upper- and lower-bound plasticity methods, as well as through the classical limit-equilibrium method. In addition, the book includes short introductions to basic mechanics and to geology, thus relating the material in geotechnical engineering to other topics in the civil engineering curriculum.

The text is designed for ease of use with short, focused chapters each dealing with a particular topic or aspect of soil behaviour. In this way, the author ensures a readable and accessible text while maintaining a continuous thread running though the book as theory develops into application. The treatment of soil mechanics is essentially theoretical, but it is not highly mathematical and soil behaviour is represented by relatively simple equations with clearly defined parameters.

Additional features
- Covers practical topics, such as geology, natural soils, site investigation and laboratory testing.
- Introduces advanced topics, such as Cam clay, non-linear soil stiffness and centrifuge modelling.
- Key points illustrated by worked examples and simple experimental demonstrations.

Professor John Atkinson holds a personal chair in Soil Mechanics at City University, London, where he established the Geotechnical Research Centre, now internationally renowned for research in soil mechanics and geotechnical engineering. He is recognized as a leading authority in the field and has acted as a consultant to industry on major projects in the UK and abroad. He lectures widely on soil mechanics, and he is the author of The Mechanics of Soils (with P.L. Bransby) and Foundations and Slopes, also published by McGraw-Hill.